Matrice booléenne - Aide aux devoirs - Emploi & Etudes
Marsh Posté le 19-10-2010 à 02:32:22
Qu'entends tu par comparer 2 matrices ?
Marsh Posté le 19-10-2010 à 07:15:52
Elles se comparent justement via les relations qu'elles représentent.
Marsh Posté le 19-10-2010 à 12:08:20
Merci pour vos réponse! en fait, je ne suis pas sur que "comparer" soit le terme adapté à cette situation. Ce que je ne comprend pas, c'est que c'est les opérateurs de comparaisons qui sont mis entre les matrices.
je m'explique: je prend par exemple un ensemble E={a,b,c}.
R est une relation de E dans E tel que:
R={(a,a)(a,b)(b,b)(c,c)(b,c)}
- on voit bien que cette relation est réflexive vu que pour chaque x € E, xRx est vraie.
- on utilisant les matrices booléennes:
on a M (R) = ( 1 1 0)
( 0 1 1)
( 0 0 1)
la règle dit que si cette relation est réflexive, alors:
( 1 1 0) (1 0 0) (la matrice identité).
( 0 1 1) >= (0 1 0)
( 0 0 1) (0 0 1)
ce que je ne vois pas c'est comment prouver une telle propriété!
"Gato66" peut tu m’éclairer plus sur le fait de comparer ces matrices via les relations qu'elles représentent" ?
merci encore!
Marsh Posté le 19-10-2010 à 13:52:19
elephantdream a écrit : |
Je pense que A >= B si, et seulement si, a_ij >= b_ij pour tous i,j.
En tous cas, avec cette acception, ton critère de réflexivité est trivial car si A >= I alors les éléments diagonaux de A valent tous 1, et réciproquement.
EDIT :
Juste une observation : en dehors de la diagonale, les élément de I sont nuls; ils sont donc toujours inférieurs où égaux aux éléments correspondants de A puisqu'il s'agit de 0 ou de 1. L'information contenue dans l'inégalité A >= I ne concerne donc que les éléments diagonaux.
Marsh Posté le 19-10-2010 à 15:20:04
merci "gyptone" pour ta réponse.
en fait, si je suis ce que tu vient de m'expliquer, pour une matrice booléenne A qui a des valeurs = 1 sur la diagonale. on a forcement A > = à la matrice identité I. et au cas où cette matrice a des valeurs nulle sur la diagonale, elle est donc < I. c'est bien ça?
Il y a juste un dernier problème : dans le cas de la transitivité, une relation R est transitive si sa matrice M>=M². donc après y avoir fait le produit (en booléen biensur) on compare les éléments 1 à 1?
merci encore!
Marsh Posté le 19-10-2010 à 15:48:27
elephantdream a écrit : et au cas où cette matrice a des valeurs nulle sur la diagonale, elle est donc < I. c'est bien ça? |
Pas vraiment : on ne sait pas forcément comparer deux matrices booléennes. Par exemple, on peut avoir des zéros partout sur la diagonale de A mais A # 0, par exemple a_12=1. On a alors a_12 > I_12 et a_11 < I_11.
elephantdream a écrit : |
Pour la transitivité, on note que M²_ij=1 s'il existe k tel que M_ik=M_kj=1. Du coup si la relation est transitive, M²_ij # 0 entraîne M_ij=1. La réciproque est facile.
Marsh Posté le 19-10-2010 à 20:17:08
Bonsoir ,
si R et R' sont deux relations et si l'on a :
pour tous a et b dans E : a R b implique a R' b
que peut-on alors dire des matrices correspondantes ? (et on pourra dire que l'une des relations est plus "fine" que l'autre).L'ordre ainsi défini est clairement partiel comme l'a dit gyptone.
Marsh Posté le 20-10-2010 à 10:36:20
Gato66 a écrit : Bonsoir , |
M(R) =< M(R')
Marsh Posté le 20-10-2010 à 12:35:58
Maintenant si on appelle Ri la relation définie par a Ri b si et seulement si a=b et que l'on dispose d'une relation R qui est réflexive alors que peut-on dire ?
Marsh Posté le 20-10-2010 à 23:56:21
Gato66 a écrit : Maintenant si on appelle Ri la relation définie par a Ri b si et seulement si a=b et que l'on dispose d'une relation R qui est réflexive alors que peut-on dire ? |
Marsh Posté le 21-10-2010 à 07:08:23
Et matriciellement ? (je pensais que c'était elephantdream qui allait répondre !)
Marsh Posté le 21-10-2010 à 10:06:20
Gato66 a écrit : Et matriciellement ? (je pensais que c'était elephantdream qui allait répondre !) |
Peut être parce qu'il a eu réponse à ses interrogations suite à mon message du 19-10-2010 à 15:48:27
Marsh Posté le 21-10-2010 à 17:20:17
ReplyMarsh Posté le 21-10-2010 à 18:55:41
Gato66 a écrit : Ah oui tu as raison |
Toujours Gato toujours...
Gato66 a écrit : on pouvait se limiter à ce cas particulier. |
Il a eu réponse précise à ses questions. Tes questions sont trivialement stupide...
Je ne vais pas refaire ton éducation mathématique ici
Marsh Posté le 21-10-2010 à 20:08:38
J'ai juste signalé que la comparaison de matrices telle que tu l'as parfaitement présentée pouvait s'interpréter sur directement sur les relations qu'elles représentent , la réflexivité apparaissant alors comme une comparaison particulière entre M(R) et M(Ri).Il est bien évident que les questions t'ont parues triviales et qu'elles ne t'étaient pas destinées (l'auteur du sujet l'avait-il perçu ?).Personne ne doute ici que tu as un niveau très élevé et nous en profitons tous , moi le premier.Ce n'est pas une raison pour être désagréable.
Marsh Posté le 18-10-2010 à 23:42:01
Bonsoir tout le monde!
Voila je fait appel à votre aide après plusieurs recherches sans résultats.
en fait, je vient de découvrir les matrices booléennes que j'ai trouvé intéressantes pour les démonstrations sur les relations binaires ( réflexivité, transitivité...)
j'ai bien compris que par exemple, une relation R dans un ensemble E est réflexive si sa matrice booléenne ( trouvée à partir du diagramme cartésien) >= à la matrice identité ou (unitaire). (c'est qu'un exemple parmi d'autres)
seulement je ne vois pas de tout sur quels éléments se base la comparaison entre deux matrices. (j'ai pensé au rang mais j'ai réussi)
pour ce qui ne voit pas de quoi je parle: une matrice booléenne c'est une matrice où il y a que des 0 et de 1, (l'addition, multiplication... de ce genre de matrices ce fait à l'aide de l'algèbre de bool, en suivant les même techniques utilisées pour les matrices numériques.)
merci de m'éclairer SVP!
merci d'avance.