Equation a deux inconues !! Help comment on fait ? Merci

Equation a deux inconues !! Help comment on fait ? Merci - Aide aux devoirs - Emploi & Etudes

Marsh Posté le 13-01-2005 à 14:38:22    

Bonjour à tous, voilà j'ai un problème a resoudre, il y aurait il quelqu'un pour m'aider et surtout m'expliquer la methode à suivre ?  
 
Sinon il y a msn pour le dialogue (pour la comprehention, c'est plus facile en direct)  
 
ergonomie_informatique@msn.com  
 
Voici le problème:  
 
La recette s'eleve à 354 000 euros pour 19 000 place à plein tarif et 5000 place a tarif réduit.  
 
Pour une famille de 5 personnes, dont trois qui payent à tarif réduit la dépense est de 62 euros.  
Calculer en euros le prix "x" du tarif plein et "y" du tarif réduit .  
 
un Grand merci à tous  
je revise avant le concour mais là vraiment , je cale
A l'aide meme avec cette notice ca ne marche pas !
http://site.voila.fr/imagesbouge/img/equation.jpg
 
Merci  de m'aider

Reply

Marsh Posté le 13-01-2005 à 14:38:22   

Reply

Marsh Posté le 13-01-2005 à 15:02:47    

T'es sérieux?
 
La solution est indiquée pourtant...
 
J'aimerais bien t'aider, mais si c'est pour du foutage de gueule, je préfère m'abstenir... ;)
 
C'est quoi ton concours? Les Mines? ;)

Reply

Marsh Posté le 13-01-2005 à 15:14:29    

jerome methode a écrit :

Bonjour à tous, voilà j'ai un problème a resoudre, il y aurait il quelqu'un pour m'aider et surtout m'expliquer la methode à suivre ?  
 
Sinon il y a msn pour le dialogue (pour la comprehention, c'est plus facile en direct)  
 
ergonomie_informatique@msn.com  
 
Voici le problème:  
 
La recette s'eleve à 354 000 euros pour 19 000 place à plein tarif et 5000 place a tarif réduit.  
 
Pour une famille de 5 personnes, dont trois qui payent à tarif réduit la dépense est de 62 euros.  
Calculer en euros le prix "x" du tarif plein et "y" du tarif réduit .  
 
un Grand merci à tous  
je revise avant le concour mais là vraiment , je cale
A l'aide meme avec cette notice ca ne marche pas !
Merci  de m'aider


 
 
Le plus dur dans des problèmes comme ça c'est de poser les equations.
 
La recette s'eleve à 354 000 euros pour 19 000 place à plein tarif et 5000 place a tarif réduit.  
 
Pour une famille de 5 personnes, dont trois qui payent à tarif réduit la dépense est de 62 euros.  
Calculer en euros le prix "x" du tarif plein et "y" du tarif réduit .

 
Aprés la lecture de tout l'enoncé (important l'air de rien! ;) ), tu sais que tu cherches le tarif plein et le tarif reduit : x et y.
 
Reprends ta première phrase et essaie de l'exprimé avec des x (tarifs pleins) et y (tarifs réduits, ça donne:
354000 = 19000 * x + 5000 * y  
en simplifiant (division des 2 côtés par 1000) tu as :
354 = 19x + 5y
 
La 2eme phrase maintenant:
3*y + 2*x = 62 (3 qui painet reduit + 2 qui paient plein pot)
 
Tu as donc un système de 2 equations :
19x + 5y = 354
2x+ 3y = 62
 
en resolvant le système :
19x + 5y = 354
2x       = 62 - 3y
 
19x + 5y = 354
x        = (62 - 3y)/2
 
tu reporte la valeur de x dans la 1ere equation:
 
19(62 - 3y)/2 + 5y          = 354
19*62/2 - 19*3y/2 + 5y      = 354
589     -  (57/2)y +5y      = 354
- (57/2)y       + 5y        = 354 - 589
- (57/2)y       + 5y        = -235
- (57/2)y       + (10/2)y   = -235
- (47/2)y                   = -235
 
y = -235 * -(2/47)
y = 10
 
En remplaçant dans x = (62 - 3y)/2, on obtient x = (62 - 30) / 2 d'ou x = 16
 
Tu peux verifier avec les toutes premieres equations :
 
19*16 + 5*10 = 354
et
2*16 + 3*10 = 62
 
ouala...
 
NB: c'est pas la bonne solution que tu as jointes... :D
 
 
 

Reply

Marsh Posté le 13-01-2005 à 15:51:26    

ok un grand merci mais alors si je n'ai qu'une equation je fais comment ?

Reply

Marsh Posté le 13-01-2005 à 15:53:55    

jerome methode a écrit :

ok un grand merci mais alors si je n'ai qu'une equation je fais comment ?


 
Tu dois avoir autant d'equations que d'inconnues, sinon tu ne pourras pas les resoudres...


Message édité par therier le 13-01-2005 à 15:54:17
Reply

Marsh Posté le 13-01-2005 à 18:23:56    

+1 Bonne explication ;)

Reply

Marsh Posté le 13-01-2005 à 19:26:22    

therier a écrit :

Tu dois avoir autant d'equations que d'inconnues, sinon tu ne pourras pas les resoudres...


Wrong. Système linéaire de déterminant non nul needed.
 
Si pas linéaire, tu peux trouver (enfin, cas spéciaux).
 
x²+y²=0 => x=0 et y=0 par exemple :p
 
(note: à son niveau, ce sera toujours linéaire et déterminant non nul)


Message édité par Profil supprimé le 13-01-2005 à 19:27:26
Reply

Sujets relatifs:

Leave a Replay

Make sure you enter the(*)required information where indicate.HTML code is not allowed